skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Changying"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, the notion of proper proximality (introduced by Boutonnet, Ioana, and Peterson [Ann. Sci. Éc. Norm. Supér. (4) 54 (2021), 445–482]) is studied and classified in various families of groups. We show that if a group acts non-elementarily by isometries on a tree such that, for any two edges, the intersection of their edge stabilizers is finite, thenGis properly proximal. We show that the wreath productG\wr His properly proximal if and only ifHis non-amenable. We then completely classify proper proximality among graph products of non-trivial groups. Our results generalize the recent work of Duchesne, Tucker-Drob, and Wesolek classifying inner amenability for these families of groups. Our results also recover some rigidity results associated to the group von Neumann algebras by virtue of being properly proximal. A key idea in the proofs of our theorems is a technique to upgrade from relative proper proximality using computations in the double dual of the small at infinity boundary. 
    more » « less